0.0
NA
CVE-2025-71069
f2fs: invalidate dentry cache on failed whiteout creation
Description

In the Linux kernel, the following vulnerability has been resolved: f2fs: invalidate dentry cache on failed whiteout creation F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link. If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings. In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode. This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink(). Example sequence: 1. First rename (RENAME_WHITEOUT): file2 → file1 - f2fs updates file1 entry on disk (points to inode 8) - f2fs deletes file2 entry on disk - f2fs_add_link(whiteout) fails (corrupted directory) - Returns error to VFS - VFS does not call d_move() due to error - VFS cache still has: file1 → inode 7 (stale!) - inode 7 has i_nlink=0 (already decremented) 2. Second rename: file3 → file1 - VFS uses stale cache: file1 → inode 7 - Tries to drop_nlink on inode 7 (i_nlink already 0) - WARNING in drop_nlink() Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds. Reproducer: 1. Mount F2FS image with corrupted i_current_depth 2. renameat2(file2, file1, RENAME_WHITEOUT) 3. renameat2(file3, file1, 0) 4. System triggers WARNING in drop_nlink()

INFO

Published Date :

Jan. 13, 2026, 4:16 p.m.

Last Modified :

Jan. 13, 2026, 4:16 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2025-71069 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

ID Vendor Product Action
1 Linux linux_kernel
Solution
Invalidate dentry cache on failed whiteout creation to maintain cache consistency.
  • Invalidate old and new dentries on failed whiteout creation.
  • Update VFS cache to reflect disk state.
  • Ensure proper handling of inode link counts.
  • Apply the provided kernel patch for f2fs.
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-71069 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-71069 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-71069 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-71069 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jan. 13, 2026

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: f2fs: invalidate dentry cache on failed whiteout creation F2FS can mount filesystems with corrupted directory depth values that get runtime-clamped to MAX_DIR_HASH_DEPTH. When RENAME_WHITEOUT operations are performed on such directories, f2fs_rename performs directory modifications (updating target entry and deleting source entry) before attempting to add the whiteout entry via f2fs_add_link. If f2fs_add_link fails due to the corrupted directory structure, the function returns an error to VFS, but the partial directory modifications have already been committed to disk. VFS assumes the entire rename operation failed and does not update the dentry cache, leaving stale mappings. In the error path, VFS does not call d_move() to update the dentry cache. This results in new_dentry still pointing to the old inode (new_inode) which has already had its i_nlink decremented to zero. The stale cache causes subsequent operations to incorrectly reference the freed inode. This causes subsequent operations to use cached dentry information that no longer matches the on-disk state. When a second rename targets the same entry, VFS attempts to decrement i_nlink on the stale inode, which may already have i_nlink=0, triggering a WARNING in drop_nlink(). Example sequence: 1. First rename (RENAME_WHITEOUT): file2 → file1 - f2fs updates file1 entry on disk (points to inode 8) - f2fs deletes file2 entry on disk - f2fs_add_link(whiteout) fails (corrupted directory) - Returns error to VFS - VFS does not call d_move() due to error - VFS cache still has: file1 → inode 7 (stale!) - inode 7 has i_nlink=0 (already decremented) 2. Second rename: file3 → file1 - VFS uses stale cache: file1 → inode 7 - Tries to drop_nlink on inode 7 (i_nlink already 0) - WARNING in drop_nlink() Fix this by explicitly invalidating old_dentry and new_dentry when f2fs_add_link fails during whiteout creation. This forces VFS to refresh from disk on subsequent operations, ensuring cache consistency even when the rename partially succeeds. Reproducer: 1. Mount F2FS image with corrupted i_current_depth 2. renameat2(file2, file1, RENAME_WHITEOUT) 3. renameat2(file3, file1, 0) 4. System triggers WARNING in drop_nlink()
    Added Reference https://git.kernel.org/stable/c/0dde30753c1e8648665dbe069d814e540ce2fd37
    Added Reference https://git.kernel.org/stable/c/3d65e27e57aaa9d66709fda4cbfb62a87c04a3f5
    Added Reference https://git.kernel.org/stable/c/64587ab4d1f16fc94f70e04fa87b2e3f69f8a7bb
    Added Reference https://git.kernel.org/stable/c/c89845fae250efdd59c1d4ec60e9e1c652cee4b6
    Added Reference https://git.kernel.org/stable/c/d33f89b34aa313f50f9a512d58dd288999f246b0
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.